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Squeezed States and Nondiagonal P-Representation

A.-S. F. Obada1 and G. M. Abd Al-Kader1

Received . . .

The R-representation and the nondiagonal P-representation for density operator
with squeezed-state basis are defined. The special cases for chaotic and laser
fields are calculated. The Fokker±Planck equation for the damped harmonic
oscillator with squeezed bath is considered and the steady-state solution is given.
A special case of the steady-state solution for only a thermal bath is shown. The
Pegg±Barnett phase distribution is compared with the radial integration on the
generalized P-function.

1. INTRODUCTION

In recent years there has been considerable interest in squeezed states

of light, e.g., in quantum optics and in possible applications to gravitational-

wave detection (Yuen, 1976; Stoler, 1970a, b; Hollenhorst, 1979; Walls, 1983;

Schumaker, 1986; and Special Issues on squeezed states in the Journal of
Modern Optics, 34(6/7), 1987, and the Journal of the Optical Society of
America B, 4(10), 1987). Formally, these states are generated from coherent

states by an appropriate squeeze operator (Yuen, 1976; Walls, 1983; and

Special Issues cited above). In 1976 Yuen mentioned the P-representation

with squeezed state basis (see also Adam and Janszky (1990). Recently
WuÈ nsche (1996) reintroduced the diagonal quasiprobability distribution func-

tions by using the squeezed-state basis. He used the convolution theorem to

express the relation between the coherent-state quasiprobability and squeezed-

state quasiprobabil ity (WuÈ nsche, 1996).

Since the introduction of the nondiagonal P-representation (PR) by

Drummond and Gardiner (1980) it has found many applications in quantum
optics (Drummond and Gardiner, 1980; Drummond et al., 1981; Gilchrist et
al., 1997; Zhu and Lu, 1989; Craig and McNeil, 1989; Smith and Gardiner,
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1989; DoÈ rfle and Schenzle, 1986; Sarkar et al., 1986), in contrast to the

diagonal P-quasiprobability function introduced by Glauber (1963), which

becomes highly singular or negative for quantum states with no classical
analogue (Barnett and Knight, 1989; Milburn and Walls, 1983). In this work

we consider the nondiagonal PR with squeezed-state basis.

The plan of this paper is as follows. In Section 2 we discuss the quasiprob-

ability functions of the squeezed states. The use of these nonclassical states

not only leads to a deeper understanding of the nature of light, but also has

potential applicability to quantum detection and communication (Adam and
Janszky, 1990; WuÈ nsche, 1996). In Section 3 we introduce the nondiagonal

PR for the density operator with squeezed-state basis, and prove the existence

theorems for the classes of nondiagonal PR. In Section 4 we discuss some

applications, namely the Fokker±Planck equation. In Section 5 we compare

the phase distribution obtained from the nondiagonal PR by integrating over

the radial variable with the Pegg±Barnett phase distribution. Finally, we draw
some conclusions.

2. QUASIPROBABILITY FUNCTIONS

A quasiprobability formulation of quantum mechanics was given first by

Wigner (1932), with a characteristic function, associated with the symmetrical

order of the annihilation and creation operator, defined by

CW( l ) 5 Tr{ r exp( l a + 2 l *a)} (2.1)

5 Tr{ r D ( l )}

where D( a ) is the Glauber displacement operator given by (Glauber, 1963)

D ( a ) 5 exp( a a + 2 a *a), with a 5 | a | e i u ) (2.2)

and a and a + are, respectively, the usual annihilation and creation operators

of the field.
The Wigner function W( a ) is defined as the Fourier transform of the

characteristic function CW( l ),

W ( a ) 5
1

p 2 # d2 l exp( a l * 2 a * l ) CW( l ) (2.3)

The Wigner function has been calculated for the squeezed state (Kim et
al., 1989).
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The Q-representation is another quasiprobability formulation and is

defined as the Fourier transform of the antinormal-ordered characteristic

function (Mehta and Sudarshan, 1965)

CA( l ) 5 Tr{ r exp( 2 l *a exp( l a +)} (2.4)

Alternatively, the Q representation can be defined as

Q ( a ) 5
1

p
^ a | r | a & (2.5)

where | a & is the coherent state defined as | a & 5 D ( a ) | 0 & . This function has

been discussed for the squeezed state (Kim et al., 1989).
Glauber (1963) and Sudarshan (1963) independently introduced the

diagonal PR for the probability density. The PR is defined as the Fourier

transform of the normal-ordered characteristic function,

CN( l ) 5 Tr{ r exp( l a +) exp( 2 l *a)} (2.6)

The three characteristic functions CW( l ), CA( l ), and CN( l ) are related to

each other.

The diagonal PR is well defined for classical states, but either it is

negative or does not exist for states exhibiting nonclassical behavior, (Barnett
and Knight, 1987). As a possible way to avoid the limits of the applicability

of the P-representation, Drummond and Gardiner (1980) suggested the so-

called positive P-representation (PPR). The PPR is defined over a double-

phase space. The PPR is always positive as in the Q-representation. The

density operator can be expressed in terms of the PPR with coherent state

basis. In what follows we shall introduce the representation using squeezed
states as basis.

2.1. R-Representation (RR) for the Density Operator with Squeezed-
State Basis

We develop an expansion for any operator in terms of squeezed states.

The squeezed coherent state is defined as (Yuen, 1976; Stoler, 1970a,

b; Schumaker, 1986; see also Special Issues cited in Section 1)

| a , j & 5 S ( j )D ( a ) | 0 & (2.7)

with the Glauber displacement operator D ( a ) [see (2.1)] and with the squeeze
operator S ( j ) given by (Stoler, 1970a, b; Hollenhorst , 1979; Schumaker, 1986)

S ( j ) 5 exp 1 12 j *a 2 2
1

2
j a 1 2 2 (2.8)
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where

j 5 rei f , 0 # r , ` , 0 # f # 2 p (2.9)

We shall begin by considering in general a class of operators and then

specialize to the case of the density operator later (Adam and Janszky, 1990).

A general quantum operator T may be expressed in terms of its matrix
elements connecting states with fixed numbers of quanta as (Glauber, 1963)

T 5 o
`

n,m
Tnm | n & ^ m | (2.10)

If we use this expression for T to calculate the matrix element which connects

the two squeezed coherent states ^ a , j | and | b , j & , we find

^ a , j | T | b , j & 5 o
`

n,m
Tnm ^ a , j | n & ^ m | b , j &

where ^ n | a , j & is given by (Yuen, 1976)

^ n | a , j & 5 (n! cosh r) 2 1/2 F 1

2
tanh rei f G

n/2

3 exp F 2
1

2
| a | 2 1 a 2e 2 i f tanh r

2 G Hn[ a (e i f sinh 2r) 2 1/2 G (2.11)

Thus we get

^ a , j | T | b , j & 5 T ( a , b , j )(cosh r) 2 1

3 exp F 2
1

2
| a | 2 2

1

2
| b | 2 1

tanh r

2
( b 2e 2 i f 1 a *2e i f ) G (2.12)

with

T ( a , b , j ) 5 o
n,m

Tnm(n! m!) 2 1/2Hn[ b (sinh 2rei f ) 2 1/2]Hm[ a *(sinh 2re 2 i f ) 2 1/2]

3 F 1

2
tanh r G

(n 1 m)/2

exp F i
f
2

(n 2 m) G (2.13)

Due to the overcompleteness of the squeezed coherent states belonging to
same squeeze parameter, we have

1

p # | a , j & ^ a , j | d 2 a 5 I (2.14)
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Therefore we may write any quantum operator T in the form

T 5
1

p 2 # # T ( a , b , j ) | a , j & ^ b , j | (cosh r) 2 1 exp F 2
1

2
| a | 2 2

1

2
| b | 2 G

3 exp F tanh r

2
( b 2e 2 i f 1 a *2e i f ) G d 2 a d 2 b (2.15)

For the special case when T 5 r ( r is the density operator), then

T ( a , b , j ) 5 R ( a , b , j ) (Adam and Janszky, 1990) takes the form of (2.15).

As a special case, from (2. 14) and (2.15) when we write j 5 0 we get the

results for the coherent states (Glauber, 1963).

3. GENERALIZED P-REPRESENTATION WITH SQUEEZED-
STATES BASIS

In this section we develop the Glauber±Sudarshan diagonal PR as an

expansion in diagonal squeezed-state projection operators (Yuen, 1976; Adam

and Janszky, 1990; WuÈ nsche, 1996)

r 5 # d 2 a P ( a , a *, j ) | a , j & ^ a , j | (3.1)

This diagonal representation is considered by Yuen (1976), and some basic

properties investigated by WuÈ nsche (1996). Because of the overcompleteness

of the squeezed states (Schumaker, 1986; and Special Issues cited above) the

diagonal P-function P ( a , a *, j ) is not unique, and does not always exist as

a well-behaved function (Barnett and Knight, 1987).
We introduce a class of generalized PR by expanding in nondiagonal

squeezed-state projection operators. Let the density operator have the form

r 5 # P ( a , b , j ) L ( a , b , j ) d m ( a , b ) (3.2)

with the projection operator defined as

L ( a , b , j ) 5
| a , j & ^ b *, j |
^ b *, j | a , j &

(3.3)

By using the definition introduced by Stoler (1970a, b) we get

L ( a , b , j ) 5 S ( j ) exp( a a + 2 a b ) | 0 & ^ 0 | exp ( b a) S+( j ) (3.4)

The projection operator L ( a , b , j ) is analytic in ( a , b ), and P( a , b , j ) in

(3.2) is analogous to the usual P-function. The integration measure d m ( a , b )
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is left undefined at present: By using various integration measures, a class

of generalized PR is generated.

(i) The diagonal PR. Let

d m ( a , b ) 5 d 2( a * 2 b ) d 2 a d 2 b (3.5)

This measure corresponds to the diagonal PR with squeezed-state basis

(Yuen, 1976; Adam and Janszky, 1990; WuÈ nsche, 1996).

(ii) Complex PR:

d m ( a , b ) 5 d a d b (3.6)

(iii) Positive P-representation:

d m ( a , b ) 5 d 2 a d 2 b (3.7)

In what follows we prove the following existence theorems.

Theorem 1. A complex P-representation exists for an operator with an

expansion in a basis of squeezed number states.

Proof. Let

r 5 o
`

n,m
CnmS ( j )a 1 m

| 0 & ^ 0 | a nS +( j )

Then, by Cauchy’ s theorem,

r 5 R C R CÂ
P ( a , b , j ) L ( a , b , j ) d a d b

with

P ( a , b , j ) 5 1 2 1

4 p 2 2 e a b o
`

n,m
C nmn! m! a 2 m 2 1 b 2 n 2 1 (3.8)

where C, CÂare integration paths enclosing the origin.

Theorem 2. A nondiagonal complex PR with squeezed-state basis exists

for an operator with an expansion in number states (Fock states) as

r 5 o
`

n,m 5 0

Cnm | n & ^ m | (3.9)
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Proof. From (3.9) and Cauchy’ s theorem we can write

r 5 R C R CÂ
P ( a , b , j ) L ( a , b , j ) d a d b

with

P ( a , b , j ) 5
2 1

4 p 2 exp F 2 a b 2 ( b 2e 2 i f 1 a 2e i f )
tanh r

2 G
3 o

`

n,m 5 0

Cnm(n! m!)1/2(cosh r) ( a b ) 2 1

3 exp F i f
2

(m 2 n) G F 1

2
tanh r G

2 (n 1 m)/2

3 {Hn[ a (e i f sinh 2r) 2 1/2]Hm[ b (e 2 i f sinh 2r) 2 1/2]} 2 1 (3.10)

by using the relation, (2.11).

For j 5 0 the asymptotic forms of Hn(z) for argument z lead to the results
of Drummond and Gardiner (1980) with the coherent state. The complex PR

given by (3.10) is convergent for 0 # r , ` and one must be very careful about

the roots of Hn( a ) and Hm( b ). By choosing appropriate paths of integration C,

CÂin the complex phase space of ( a , b ) the complex PR of (3.10) may be

looked at as a weight function.

Theorem 3. If the diagonal PR exists, a corresponding PPR exists, with

P( a , b , j ) given by

P ( a , b , j ) 5
1

4 p 2 exp 1 2
| a 2 b * | 2

4 2
3 K 1

2
( a 1 b *), j | r |

1

2
( a 1 b *), j L (3.11)

Proof. Let P ( a Â, a Â*, j ) be the diagonal PR for the density operator with

squeezed state basis (3.1). Then by direct substitution into (3.11) we get

P( a , b , j ) 5 1 1

4 p 2 2 # P ( a Â, a Â*, j )

3 exp F 2
| a 2 a Â| 2

2
2

| b * 2 a Â| 2

2 G d 2 a Â (3.12)
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Next it is necessary to demonstrate that P ( a , b , j ) as defined above does

represent r , so the rhs of equation (3.2) is evaluated,

# # P ( a , b , j ) L ( a , b , j ) d 2 a d 2 b

5 1 1

4 p 2 2 # # # P ( a Â, a Â*, j ) L ( a , b , j )

3 exp F 2
| a 2 a Â| 2

2
2

| b * 2 a Â| 2

2 G d 2 a Âd 2 a d 2 b

Using the integral in the Appendix, we get

# # P ( a , b , j ) L ( a , b , j ) d 2 a d 2 b 5 # | a Â& ^ a Â| P ( a Â, a Â*, j ) d 2 a Â5 r

Theorem 4. The PPR exists for any quantum operator and is given

by (3.11).

Proof. In order to show that this represents a quantum density operator

in the general case, the characteristic function (2.1) is used. In terms of RR

for r , (2.15), the characteristic function for normal ordering is

CR( l , j ) 5
1

p cosh r # d 2 a R ( a , a 1 l , j )

3 exp F 2 | a | 2 1
tanh r

2
(e i f a *2) 2 l * a G

3 exp F tanh r

2
e 2 i f ( a 1 l )2 G (3.13)

by using (A10).

We define the generalized function P ( a , b , j ) in the form

P( a , b , j ) 5
1

4 p 4 cosh r # # d 2 a Âd 2 b ÂR ( a Â, b Â, j )

3 exp F 2
1

2
| a | 2 2

1

2
| b | 2 2 | a Â| 2 2 | b Â| 2 G

3 exp F tanh r

2
( b Â2e 2 i f 1 a Â*

2
e i f )

1
a Â

2
( a * 1 b ) 1

b Â

2
( a 1 b *) G (3.14)
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by using RR and equation (3.11). Then the corresponding characteristic

function CP( l , j ) is

CP( l , j ) 5
1

4 p 4 cosh r # # # # d 2 a Âd 2 b Âd 2 a d 2 b R ( a Â, b Â, j )

3 exp F 2
1

2
| a | 2 2

1

2
| b | 2 2 | a Â| 2 2 | b Â| 2 G

3 exp F tanh r

2
( b Â2e 2 i f 1 a Â*2e i f )

1
a Â

2
( a * 1 b ) 1

b Â

2
( a 1 b *) 1 l * b 2 l a * G

By performing the change of variables a and b to

g 5
( a 1 b *)

2
, d 5

( a 2 b *)

2
(3.15)

we can write the above expression for the characteristic function in the form

CP( l , j ) 5
1

p cosh r # d 2 a ÂR ( a Â, a Â1 l , j )

3 exp[ 2 | a Â| 2 1
tanh r

2
(e i f a Â*2) 2 l * a Â] (3.16)

3 exp F tanh r

2
e 2 i f ( a Â1 l )2 G

by using (A10) for the integrations with respect to b , d , and g . From (3.13)

and (3.16) it is clear that the two characteristic functions which have been

defined in different ways are the same, and we get the result.

Examples. As an example of a state of the quantized radiation field

which possesses a well-behaved PR with coherent state basis we may choose

a single-mode chaotic or thermal field (Kral, 1990; Knight and Allen, 1983).
Equation (3.11) determines the PPR or any quantum operator, hence we use

the chaotic operator to define the PPR for such fields. The density operator

for chaotic light is given by (Glauber, 1963)

r ch 5
1

p ^ n & # exp 1 2 | a Â| 2

^ n &
| a Â& ^ a Â| d 2 a Â2 (3.17)
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The nondiagonal PPR given by (3.11) has the form

Pch( a , b , j ) 5
(cosh r) 2 1

4 p 2 ^ n & ! K

3 exp F 1

K cosh2 r 1 1 1
1

^ n & 2 Z a 1 b *

2 Z
2

2
1

2
( | a | 2 1 | b | 2) G

3 exp H tanh r

2 1 1 2
1

cosh2 rK 2
3 F 1 a 1 b *

2 2
2

e 2 i f 1 1 a * 1 b
2 2 2e i f G J (3.18)

where

K 5 1 1 1
1

^ n & 2
2

2 (tanh r)2 (3.19)

Another example of such states is the ideal laser radiation field, which

has the PR in the form of a delta function, since the phase of oscillations at

high optical frequencies is not usually under control and we have to assume

that the phase is uniformly distributed. Thus we may write the density operator

for the ideal laser on the form (Perina, 1985)

r l 5 # 1

2 p | a Â|
d ( | a Â| 2 ! ^ n & ) | a Â& ^ a Â| d 2 a Â (3.20)

where a Â5 | a Â| ei c . The nondiagonal PPR for the state of the laser radiation

is given by (3.11) by introducing (3.20). The distribution is independent of

the phase c and therefore it describes a stationary field; in effect we get

Pl( a , b , j ) 5
1

8 p 3 coshr
exp H 2

1

2
| a | 2 2

1

2
| b | 2

1
tanhr

2 F 1 a 1 b *

2 2
2

e 2 i f 1 1 a * 1 b
2 2

2

e i f G J
3 exp H 2 ^ n & F 1 1

tanh r

2
(e 2 i f 1 e i f ) G

1
! ^ n &

2
[( b 1 b *) 1 ( a 1 a *)] J (3.21)
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In the expressions (3.18) and (3.21), when we put a 5 b * we have the PPR

for these fields equal to (1/N ) the Q-function for the squeezed states (Walls,

1983; WuÈ nsche, 1996) of these fields, where N is a normalization constant
of Pch( a , a *, j ). Figures 1 and 2 give [(1/N Q ( a )] for different values of the

squeeze parameter r: (a) r 5 0 and (b) r 5 1 (we choose f 5 0 and ^ n & 5
2.5) for the chaotic light and laser radiation, respectively. The results for the

coherent state representation (Mehta and Sudarshan, 1965; Perina, 1985) of

chaotic and laser radiation fields can be obtained when we set j 5 0 in (3.18)

and (3.21). As Fig. 1 shows, the Gaussian shape of (3.18) for the chaotic
field is squeezed as the squeeze parameter r increases. Figure 2 shows that

the Gaussian shape of (3.21) for the laser field is squeezed and the origin

displaced as the squeeze parameter r increases (Kim et al., 1989). In general

we obtain the squeezed-state Q-function (WuÈ nsche, 1996) from our PPR as

a special case when we put a 5 b *.

4. FOKKER± PLANCK EQUATION (FPE) FOR A DAMPED
HARMONIC OSCILLATOR WITH SQUEEZED BATH

We begin by briefly discussing the standard theory for a damped har-

monic oscillator with squeezed bath (Milburn and Walls, 1983; Perina, 1985;

Sargent et al., 1974; Louisell, 1973; Walls and Milburn, 1994). Standard

treatments of the quantum theory of damping yield the following master
equation for the density operator r of the harmonic oscillator in the interaction

picture (Walls and Milburn, 1994)

- r
- t

5
n
2

(N 1 1) (2a r a + 2 a + a r 2 r a + a) 1
n
2

N (2a + r a 2 aa+ r 2 r aa+)

1
n
2

M (2a + r a 1 2 a + a + r 2 r a + a +) 1
n
2

M* (2a r a 2 aa r 2 r aa)

(4.1)

where n is the damping constant and N and M are the thermal and squeezed

baths, respectivily (Walls and Milburn, 1994). This operator master equation

may be converted into an equivalent c-number representation using the

Glauber±Sudarshan PR for the density operator (Glauber, 1963; Sudarshan,
1963) in the form (Milburn and Walls, 1983; Walls and Milburn, 1994)

- P ( a )

- t
5 H n

2 1 -
- a

a 1
-

- a *
a * 2

1
n
2 1 M - 2

- a 2 1 M*
- 2

- a *2 2 1 n N
- 2

- a a * J P ( a ) (4.2)
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Fig. 1. Positive P-representation for the chaotic radiation field (3.18). Here b 5 a *, x 5
Re( a ), y 5 Im( a ), f 5 0, and ^ n & 5 2.5. (a) r 5 0, (b) r 5 1.
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Fig. 2. Positive P-representation for the laser radiation field (3.21). Here b 5 a *, x 5
Re( a ), y 5 Im( a ), f 5 0, and ^ n & 5 2.5. (a) r 5 0, (b) r 5 1.
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When M . N this equation has nonpositive-definite diffusion (Walls and

Milburn, 1994). While nonsingular representations for P( a ) exist for a wide

class of states, e.g., thermal states (a Gaussian distribution) and coherent
states (a d -function distribution), a well-behaved positive functions for P ( a )

does not exist for certain states exhibiting nonclassical behavior (Barnett and

Knight, 1987).

The Drummond±Gardiner nondiagonal PR P ( a ) comes from the expan-

sion of the nondiagonal projection operator of r . For the given master equation,

the corresponding FPE for P ( a , b ) has been derived by many authors (Drum-
mond and Gardiner, 1980; Drummond et al., 1981; Gilchrist et al., 1997;

Zhu and Lu, 1989; Smith and Gardiner, 1989; Dorfle and Schenzle, 1986;

Sarkar et al., 1986; McNeil and Craig, 1990; Lu et al., 1989; Walls and

Milburn 1994) for different models.

We proceed by substituting (3.2) into the equation of motion for the

density operator (4.2) and then use standard techniques (Drummond et al.,
1981) for deriving the FPE for the density operator with squeezed-state

expansion.

4.1. Operator Identities

We give some operator identities which will be used to derive the FPE.

By using the projection operator given by (3.4) and the techniques of (Drummond
and Gardiner, 1980; Drummond et al., 1981; Gilchrist et al., 1997), we obtain

a L ( a , b , j ) 5 F a cosh r 2 ei f 1 b 1
-

- a 2 sinh r G L 1 a , b , j 2 (4.3a)

a + L ( a , b , j ) 5 F 1 -
- a

1 b 2 cosh r 2 e 2 i f a sinh r G L 1 a , b , j 2 (4.3b)

L ( a , b , j )a + 5 F b cosh r 2 e 2 i f 1 -
- b

1 a 2 sinh r G L 1 a , b , j 2 (4.3c)

L ( a , b , j )a 5 F 1 -
- b

1 a 2 cosh r 2 e i f b sinh r G L ( a , b , j ) (4.3d)

By using these operator identities, and integration by parts, we can cast (4.1)
in the form

- P ( a , b , j )

- t
5

n
2 H 1 -

- a
a 1

-
- b

b 2 1 D11
- 2

- a 2

1 2D12
- 2

- a - b
1 D22

- 2

- b 2 J P( a , b , j ) (4.4a)



Squeezed States and Nondiagonal P-Representation 2221

where

D11 5 [M* sinh2 re2i f 1 M cosh2 r 1 N sinh 2rei f (4.4b)

D12 5 D21 5
1

2 F M* sinh 2rei f 1 M sinh 2re 2 i f 1 2N (2 sinh2 r 1 1) G (4.4c)

D22 5 [M sinh2 re 2 i f 1 M* cosh2 r 1 N sinh 2re 2 i f (4.4d)

This differs from the corresponding equation of motion for the P-function

only through the squeeze-dependent diffusion coefficients, which are given
by (4.4) rather than in (4.2). This is sufficient to give a positive-definite

diffusion matrix when the bath is in a squeezed state. The solution for the

above equation may be found exactly (Milburn and Walls, 1983; McNeil and

Craig, 1990; Lu et al., 1989; Walls and Milburn, 1994).

The steady-state solution is given by

Pss, M( a , b , j )

5 N1 exp F n
4(D21 2 D11 D22)

(D11 a 2 2 4D12 a b 1 D22 b 2) G (4.5)

where N1 is the normalization condition, and D11, D12, and D22 are given

by (4.4).
In the case of a thermal bath, M 5 0, and N 5 (e " v /kT 2 1) 2 1 the thermal

photon number, with T the temperature of the reservoir, then the steady-state

solution has the form

Pss ( a , b , j ) 5
A0

2 ! p
exp F 2 1 K2 2 (b a 2 2 2c a b 1 b* b 2) G (4.6)

with K 5 1/( | b | 2 2 c 2) and b, c given by

b 5 1 N 1
1

2 2 sinh 2rei f , c 5 (2N 1 1) sinh2 r 1 N

Here A0 is a normalization constant, which depends on the integration contours

C and CÂ. Notice that when there is no squeezing (i.e., j 5 0), one can

set b 5 a * in equation (4.6), which reduces to the Glauber±Sudarshan P-

distribution of chaotic radiation fields (Glauber, 1963) and the integration in

this case is over the whole a plane. With this we conclude this section. In

the next section we turn our attention to the phase distribution function.

5. PHASE DISTRIBUTION

The phase properties of the field have attracted considerable interest

(Susskind and Glogower, 1964; Barnett and Pegg, 1989, 1990; Ban, 1991,
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1993; Vaccaro and Pegg, 1989; Chizhov et al., 1993; Garraway and Knight,

1992, 1993; Luks and Perinova, 1994; Leonhardt and Jex, 1994; Tanas et
al., 1993; also see Special Issue of Physica Scripta, T48, 1993). In the
Pegg±Barnett phase operator (Barnett and Pegg, 1989, 1990) formalism, all

physical quantities are calculated in (s 1 1)±dimensional space. After all

calculations are completed, s is made infinite. The Pegg±Barnett phase opera-

tor and its eignstates are defined in (s 1 1)-dimensional space C spanned

by the number states | 0 & , | 1 & , . . ., | s & . The Hermitian phase operator is

defined as

F PB 5 o
s

m 5 0

| h m & h m ^ h m | (5.1)

A complete orthonormal basis of (s 1 1) phase states is defined on C as

| h m & 5
1

! s 1 1 o
s

n 5 0

exp ( 2 in h m) | n & (5.2)

which are eigenstates of the operator (5.1) with eigenvalues h m , where

h m 5 h 0 1
2 p m

s 1 1
(m 5 0, 1, 2, . . . , s) (5.3)

Physical states are expressed as | c & 5 ( s
m 5 0 a m | m . . Thus, in the Pegg±Barnett

formalism, the average value of a phase quantity can be calculated by

^ c | F PB | c & 5 o
s

m 5 0
h m | ^ h m | c & | 2 (5.4)

where | ^ h m | c & | 2 gives the probability of being in the phase state | h m & . We

take the limit as s ® ` , to have

^ c | F PB | c & 5 #
p

2 p

h P PB( h ) d h (5.5)

where the continuum phase distribution PPB( h ) is introduced by

PPB( h ) 5 lim
s ® `

s 1 1

2 p
| ^ h m | c & | 2 (5.6)

The distribution (5.6) is normalized such that

#
p

2 p

P PB ( h ) d h 5 1 (5.7)

Once the phase distribution function PPB ( h ) is known, all the quantum
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mechanical phase expectation values can be calculated with this function in

a classical-like manner by integration over h .

The phase distribution properties for the squeezed states are discussed in
Ban (1991, 1993). The phase distribution is compared to the phase distribution

obtained from the generalized P-representation by integrating over the radii

(Chizhov et al., 1993; Garraway and Knight, 1992, 1993; Luks and Perinova,

1994; Leonhart and Jex, 1994; Tanas et al., 1993; and Physica Scripta,

T48, 1993).

From (2.11) and (5.2), we get

| ^ h m | a , j & | 2 5
1

s 1 1 o
s

n,k 5 0

( ^ n | a , j & ) ( ^ k | a , j & )*e 2 i(n 2 k) h m (5.8)

Then the distribution function takes the form

P PB( h ) 5
1

2 p o
`

n,k 5 0

( ^ n | a , j & )( ^ k | a , j & )*e 2 i(n 2 k) h (5.9a)

P PB( u ) 5
1

2 p H 1 1 2 Re 1 o
`

n,k 5 0,n . k
r nke

2 i(n 2 k) u 2 J (5.9b)

This is the formula for the Pegg±Barnett formalism.

Another phase distribution can be obtained by integrating the nondiago-

nal positive P-function over the radial variables | a | and | b | (Ban, 1991,

1993; VaccaroÂand Pegg, 1989; Chizhov et al., 1993; Garraway and Knight,

1992, 1993; Luks and Perinova, 1994). When a * 5 b , we have the special case

PPP( u ) 5 4 p #
`

0

P ( a , a *) | a | d | a | (5.10)

An illustration of the two types of phase distribution can be made using a

coherent state | a & (Glauber, 1963) as the quantum state of interest. The

Pegg±Barnett phase distribution has to be found by a numerical summation
of (5.9). However, to derive the positive P-representation (WuÈ nsche, 1996;

Drummond and Gardiner, 1980; Drummond et al., 1981; Gilchrist et al.,
1997) phase distribution we obtain [using the special case of (3.11) when

j 5 0, a 5 b *, and r given by (3.9)],

PPP( u )

5
1

2 p H 1 1 2 Re 1 o
`

n,m 5 0,n . m
r nm

G [(n 1 m)/2 1 1]

(n! m!)1/2 e 2 i(n 2 m) u 2 J (5.11)

where the coefficients G [(n 1 m)/2 1 1]/ (n! m!)1/2 distinguish between the
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two distributions. The PPR (3.11) can be written for the density operator

with number state expansion (3.9) as (for real j )

P ( a , a *, j ) 5
1

4 p 2 o
`

n,m 5 0

r nm(1±2tanh r)(n 1 m)/2

(n! m!)1/2 cosh r

3 exp F 2 | a | 2 2 ( a *
2

1 a 2)
tanh r

2 G
3 Hn F | a | (e i u 1 e 2 i u tanh r)

(2 tanh r)1/2 G Hm F | a | (e 2 i u 1 e i u tanh r)

(2 tanh r)1/2 G
(5.12)

where r nm is the Fock density matrix element. Then we may write the phase
distribution [by using (5.12) in (5.10), Hermite polynomial expansion (Kim

et al., 1989), and integration (Gradshteyn and Ryzhik, 1980)]

PPP( u )

5
1

2 p H 1 1 2 Re 1 o
`

n,m 5 0
r nmG (n, m, u ) exp[ 2 i (n 2 m) u ] 2 J (5.13)

where

G (n, m, u ) 5 o
n/2

k 5 0
o
m/2

s 5 0

(1±2 tanh r)k 1 s(n! m!)1/2 ( 2 1)k 1 s

k! s! (n 2 2k)! (m 2 2s)! cosh r

3 G F (k 1 n)

2
2 m 2 s 1 1 G

3 D k 1 s 2 1 2 (n 1 m)/2 (1 1 e 2 2i u tanh r)m 2 2s(1 1 e 2i u tanh r)n 2 2k

3 exp[i (2k 2 2s) u ] (5.14a)

and

r nm 5 ( ^ n | a 0, j 0 & ) ( ^ m | a 0, j 0 & )*, D 5 1 2 tanh r cos (2 u ) (5.14b)

The formula (5.14) allows for calculations of the phase distribution for any

squeezed state with known r nm (matrix elements) and comparison to the
Pegg±Barnett phase distribution. Formula (5.14) generalizes the results

obtained from the s-parametrized quasiprobability distributions given in Tanas

et al. (1993; also see Special Issue of Physica Scripta, T48; 1993). The

positive P-function may be written in the form ( j is real)

P ( a , a *, j ) 5
1

4 p 2 ^ a , r | r | a , r & (5.15)
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with the density operator given by (for a 0 and r0 real constants)

r 5 | a 0, r0 & ^ a 0, r0 | (5.16)

Then we get

P ( a , a *, j ) 5
1

4 p
g exp[ 2 A | a | 2 2 2B | a | ]

where

g 5
1

p cosh(r0 2 r)
exp{ 2 | a 0 | [(cosh 2r0 1 sinh 2r0

3 2 tanh (r0 2 r))(cosh r0 1 sinh r0)
2]}

A 5 cosh 2r 1 sinh 2r tanh(r0 2 r)

1 [cosh 2r tanh (r0 2 r) 1 sinh 2r] cos 2 u

B 5 2 a 0 1 1 1
sinh(r0 1 r)

cosh(r0 2 r) 2 cos u

By using (5.10) we get

PPP( u ) 5 g H 1

2A
2

B

2A 1 pA 2
1/2

exp 1 B
2

A 2 F 1 2 Erf 1 B

A 1/2 2 G J (5.17)

Formula (5.17) is valid for both small and large a 0. For r 5 0 we have the

result for the squeezed state (Tanas et al., 1993; see also Special Issue of
Physica Scripta, T48, 1993) on the coherent basis. In the phase distribution

calculations we use | b , j & 5 D ( b 0)S ( j ) | 0 & , the identical definition of the

squeezed state. Figures 3 and 4 show plots of the Pegg±Barnett phase distribu-

tion PPB( u ) and the phase produced from integrating the positive P-representa-

tion over radii in one complex plane PPP( u ) in the case j 5 0. Both figures
show the constant distribution for a 5 0 and how the peak around u 5 0

starts to build up as | a | increases. The plot in Fig. 4 is similar to the phase

distribution obtained from integrating the Q-function over radius (Garraway

and Knight, 1992, 1993; also see Special Issue of Physica Scripta, T48,

1995). Figure 5 shows the three-dimensional picture of the phase distribution

(5.17) with increasing squeeze r. We note the bifurcation (Special Issue,
Physica Scripta, T48, 1993). However, we remark here that the direction of

the bifurcation may be switched according to the sign of the parameter r0.

6. CONCLUSIONS

General classes of quasiprobabilities, i.e., Wigner, Q-function, and P-

representation, have been discussed briefly. We introduced the R-representa-
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Fig. 3. The phase distribution PPB( u ), equation (5.9) (i.e., for r 5 0). Here u : p ® 2 p
and a : 0 ® 3.

tion for the density operator using the squeezed state as basis, which general-

izes Glauber (1963) and Adam and Janszky (1990). The nondiagonal P-
representation with squeezed-state basis was defined for classes of complex

and positive representations, which generalizes the work of Drummond and

Gardiner (1980). The new representation for the density operator generalizes

the work of WuÈ nsche (1996) since the measure in (3.5) gives us the diagonal

PR. But the positive PR produces the Q-function in that work. We found
explicit expressions for the positive P-representation for the two natural fields,

which are extensions to results given in Perina (1985). We introduced an

application of the genuine representation to the Fokker±Planck equation for

Fig. 4. The phase distribution PPP( u ), equation (5.17) (i.e., for r0 5 r 5 0). Here u : p ®
2 p and a : 0 ® 3.
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Fig. 5. The phase distribution PPP( u ), equation (5.17), against the initial squeeze parameter

r0; a 0 5 1, and r takes the following values: (a) r 5 2 0.5, (b) r 5 0, (c) r 5 0.5, and

(d) r 5 1. Here x 5 u and y 5 r0.
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Fig. 5. Continued

the squeezed field of a damped harmonic oscillator with a squeezed bath.

We gave the steady-state solution of the differential equation (Fokker±Planck)

of the complex P-representation, which gives in one complex plane
(i.e., a 5 b *) the Glauber±Sudarshan P-representation (Glauber, 1963). We

have shown how the Pegg±Barnett phase distribution can be related to the

phase produced by integrating the nondiagonal positive P-function. We also

have shown the effect of the squeeze parameter contained in the basis state
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on the resulting phase distribution. This work should to be useful for the

calculation of the quasiprobabilities for squeezed coherent states.

APPENDIX

We evaluate the integral

I 5 # f ( a ) exp[ 2 n 1 | a | 2 1 n 2 a 2 1 n 3 a *2 1 n 4 a 1 n 5 a *] d 2 a (A1)

where n i , i 5 1, 2, . . . , 5 are complex numbers. The integral (Kral, 1990)

# exp[ 2 n 1 | a | 2 1 n 2 a 2 1 n 3 a *2 1 n 4 a 1 n 5 a *] d 2 a

has the value

p

! K
exp F 1

K
( n 5 n 4 n 1 1 n 2

5 n 2 1 n 2
4 n 3) G (A2)

where

Re (K ) . 0, Re[ n 1 1 n 2 1 n 3] . 0, K 5 n 2
1 2 4 n 2 n 3

Let the function f ( a ) be analytic and have a convergent series in the form

f ( a ) 5 o
`

m 5 0
Cm a m (A3)

It is convenient to introduce the generating function

G ( h ) 5 o
`

n 5 0

In
h n

n!
(A4)

where

In 5 # a n exp[ 2 n 1 | a | 2 1 n 2 a 2 1 n 3 a *2 1 n 4 a 1 n 5 a *] d 2 a (A5)

By using (A2), we get

G ( h ) 5
p

! K
exp H 1

K
[ n 5 ( n 4 1 h ) n 1 1 n 2

5 n 2 1 ( n 4 1 h )2 n 3] J (A6)
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whence

In 5 1 -
- h 2

n

G ( h ) | h 5 0 (A7)

Consequently

In 5
p

! K
exp F 1

K
( n 5 n 4 n 1 1 n 2

5 n 2 1 n 2
4 n 3) G 1 -

- h 2
n

3 H exp F h
K

( n 5 n 1 1 2 n 4 n 3) exp F h 2

K
n 3 G J Z h 5 0

(A8)

By using the Leibniz formula

(Y Z )(n) 5 o
n

j 5 0 1 nj 2 Y (n 2 j)Z ( j) (A9)

and the above results, we get

I 5 # f ( a ) exp[ 2 n 1 | a | 2 1 n 2 a 2 1 n 3 a *2 1 n 4 a 1 n 5 a *] d 2 a

5
p

! K
exp F 1

K
( n 5 n 4 n 1 1 n 2

5 n 2 1 n 2
4 n 3) G H o

`

n 5 0

Cn o
n/2

s 5 0 1 n

2s 2
3 1 n 5 n 1 1 2 n 4 n 3

K 2
n 2 2s

1 n 3

K 2
s

p
s

i 5 1

(2s 2 i 1 1) J (A10)

By using the generating function for the Hermite polynomials (Leonhardt

and Jex, 1994), we may write (A10) in the form

I 5
p

! K
exp F 1

K
( n 5 n 4 n 1 1 n 2

5 n 2 1 n 2
4 n 3) G

3 H o
`

n 5 0
Cn 1 2 n 3

K 2
n/2

Hn(x) J (A11)

where

x 5 1 n 5 n 1 1 2 n 4 n 3

2 ! 2 K n 3 2
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and

H (x) 5
d n

dtn exp[2xt 2 t 2] | t 5 0 (A12)
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